Environmental Product Declaration

In accordance with ISO 14025 for:

CAST MANGANESE STEEL RAILWAY CROSSING

from

OUTREAU TECHNOLOGIES – VOSSLOH Group

Programme: The International EPD® System, www.environdec.com
Programme operator: EPD International AB
EPD registration number: S-P-01638
Publication date: 2019-08-13
Valid until: 2024-08-12

An EPD should provide current information, and may be updated if conditions change. The stated validity is 5 years therefore subject to the continued registration and publication at www.environdec.com
Programme information

<table>
<thead>
<tr>
<th>Programme:</th>
<th>The International EPD® System</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPD International AB</td>
</tr>
<tr>
<td></td>
<td>Box 210 60</td>
</tr>
<tr>
<td></td>
<td>SE-100 31 Stockholm</td>
</tr>
<tr>
<td></td>
<td>Sweden</td>
</tr>
<tr>
<td></td>
<td>www.environdec.com</td>
</tr>
<tr>
<td></td>
<td>info@environdec.com</td>
</tr>
</tbody>
</table>

PCR review was conducted by: <The Technical Committee of the International EPD® System. Review chair: Massimo Marino. Contact via info@environdec.com>

Independent third-party verification of the declaration and data, according to ISO 14025:2006:

- [] EPD process certification
- [x] EPD verification

Third party verifier: <Julie ORGELET, DDEMAIN and signature of the third party verifier>

In case of recognised individual verifiers:
Approved by: The International EPD® System

Procedure for follow-up of data during EPD validity involves third party verifier:

- [x] Yes
- [] No

The EPD owner has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable.
Product information

Owner of the EPD:

OUTREAU TECHNOLOGIES +33 (0) 3 21 99 53 04, out.sales@vossloh.com
43 rue Pierre Curie – BP 119
62230 Outreau
France

Name and location of production site: Outreau Technologies / North of FRANCE
Company information
The History of Outreau Technologies

1857: Creation of 4 blast furnaces
1919: Installation of the steel mill
1954: First Manganese Crossing
1985: Acquisition by Manoir Industries
2013: Acquisition by Vossloh Group
2016: Construction of new plant

Quality and environmental management: Our Certifications
OUTREAU TECHNOLOGIES has an ISO9001 v2015 certified Quality Management System and an Environment Management System based on ISO 14001 to be achieved in a few years. Our organization allow us to manage legal requirements of the French Administration.

Networks & Contractors- Our products all over the world
France, Switzerland, Belgium, UK, Italia, Sweden, Netherlands, Russia, Paris metro, Israel, Morocco, Chile, Japan

Thanks to its specific manufacturing means, Outreau technologies is able to build all kinds of networks for any specifications until 12 meters length.
All cast manganese products have the same grade that could answer to many technical specifications. Manganese steel is 100% recyclable after use in service even after many years. It means that we can always melt “recycling” crossings in our furnace and manufacture new crossings.
The Vossloh Group

As a rail infrastructure company, we produce tried-and-tested key components and modules. To this end, we are a single-source provider of integrated solutions and services that cover the entire rail lifecycle.

Vossloh is a technologically leading Group in the field of rail infrastructure. We provide our customers around the world with integrated railway solutions.

Our Product Range

- Rail Fastening Systems
- Signalling Technology
- Signalling Systems
- Switch Systems and Mn crossings
- Concrete Ties & LVT
- Concrete Crossing Panels
- Track and Turnouts Logistics
- Track and Turnouts Maintenance/Repair
- Track Analysis
Product information

Product name: Cast Manganese steel railway crossing
Product identification: Steel railway crossing product
Product description: Cast manganese steel railway crossings are employed at safety critical location throughout railway infrastructure due to their work hardening material properties. The track crossing is located at the centre of the turnout and provides the continuity of two intersecting routes, as the picture below.

Outreau Technologies supplies crossings and cradles that meet the internal health criteria of European standard CSN EN 15689:2009. Outreau Technologies crossings are installed all over the world: in Algeria, Saudi Arabia, Belgium (Infrabel), Bolivia, Chile, Denmark, Egypt, United Arab Emirates, Eurotunnel, Finland, France (SNCF, RATP), Hong Kong, Italy (RFI), Morocco, Mauritania, Mexico, Norway, Netherlands, Portugal, United Kingdom (Network Rail), Sweden, Switzerland (SBB), Tunisia, USA, etc.

Outreau Technologies cast manganese crossing are already homologate for SNCF, RATP, INFRABEL, RFI, PRORAIL, BANEDANELARK, CFF, NETWORK RAIL

UN CPC code: UN CPC 412
Geographical scope: Production in France. Use not considered in EPD, so applicable all over the world.

LCA information

The LCA study was carried out in accordance with the following standards:
- International EPD System General Program Instruction. (Version 3.0) 2017-12-11
- PCR 2014:10 Fabricated steel products, except construction products, machinery and equipment (Version 2.1)

Functional unit / declared unit: “One ton of product made of steel”
For information a classical product is made of 1014 kg.
Reference service life: Not applicable for this product category
Time representativeness: Specific Data from Outreau Technologies have been collected in the reference year 2018 (January to December 2018). Outreau Technologies process of production have been not changed from 2019.
Database(s) and LCA software used: BDD CODDE-2018-11; EIME V5.8

Description of system boundaries:
From cradle to gate

System boundaries:
As indicated in the PCR references (“PCR Fabricated steel products, except construction products, machinery and equipment 2014:10 version 2.1”) shown here below, system limits
of crossing production include the production and the transport of the raw material.

In details, the processes to consider for the assessment of the life cycle of the cast manganese steel railway crossing:

Upstream processes
- Extraction and production of raw materials for all main parts and components of the product
- Recycling process of recycled material used in the product
- Transportation of raw material to the upstream processes

Core processes
- Transportation of the steel to the core process where the final steel product will be manufactured
- Transportation to the core processes of materials used as auxiliary materials in the core production
- Manufacturing process for main parts and components (including core process related material consumption, energy production and consumption, emissions to air, water and soil...)
- Assembly of the final product
- Waste treatment of waste generated during manufacturing,
- Impacts due to the production of electricity and fuels used in the core module

Excluded lifecycle stages: Downstream processes
- Not included in the system boundaries according to the Cradle to Gate scope

The different steps leading to the manufacturing of the product are described in the following figure.

More information: LCA study released by LCIE Bureau Veritas (website: www.codde.fr; contact: codde@fr.bureauveritas.com)

For more information of the product: https://media.vossloh.com/media/01_product_finder/vco/switch_systems/manganese_crossings/FTC41_OT_EN_V1_100317.pdf
Content declaration
Product

<table>
<thead>
<tr>
<th>Materials / chemical substances</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>85.4</td>
</tr>
<tr>
<td>Manganese</td>
<td>12.8</td>
</tr>
<tr>
<td>Carbon</td>
<td>1.2</td>
</tr>
<tr>
<td>Silicon</td>
<td>0.4</td>
</tr>
<tr>
<td>Chromium</td>
<td>5.27 (\times) 10^{-2}</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>2.6 (\times) 10^{-2}</td>
</tr>
<tr>
<td>Copper</td>
<td>2.3 (\times) 10^{-2}</td>
</tr>
<tr>
<td>Nickel</td>
<td>1.9 (\times) 10^{-2}</td>
</tr>
<tr>
<td>Niobium</td>
<td>1.8 (\times) 10^{-2}</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1.8 (\times) 10^{-2}</td>
</tr>
<tr>
<td>Cobalt</td>
<td>1.7 (\times) 10^{-2}</td>
</tr>
<tr>
<td>Vanadium</td>
<td>1.34 (\times) 10^{-2}</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.5 (\times) 10^{-2}</td>
</tr>
<tr>
<td>Tin</td>
<td>0.5 (\times) 10^{-2}</td>
</tr>
<tr>
<td>Aluminium</td>
<td>9.6 (\times) 10^{-4}</td>
</tr>
<tr>
<td>Sulfur</td>
<td>4.0 (\times) 10^{-4}</td>
</tr>
</tbody>
</table>

Packaging
This product is distributed directly by truck without protection to the implementation place.

Reused material
Provence of reused materials (pre-consumer or post-consumer) in the product: circulating scrap come from outside the company (42.05%) and Home scrap come from the company (45.45%). No virgin steel is used for the crossing manufacturing.
Environmental performance

Product level declared unit scope “unit product”

Potential environmental impact

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT</th>
<th>Upstream</th>
<th>Core</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming potential (GWP)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fossil</td>
<td>kg CO\textsubscript{2} eq.</td>
<td>9,96.10-02</td>
<td>4,33.10-02</td>
<td>1,43E-03</td>
</tr>
<tr>
<td>Biogenic</td>
<td>kg CO\textsubscript{2} eq.</td>
<td>2,99.10-00</td>
<td>2,32.10-01</td>
<td>2,62E-01</td>
</tr>
<tr>
<td>Land use and land transformation</td>
<td>kg CO\textsubscript{2} eq.</td>
<td>INA*</td>
<td>INA*</td>
<td>INA*</td>
</tr>
<tr>
<td>TOTAL</td>
<td>kg CO\textsubscript{2} eq.</td>
<td>9,99.10-02</td>
<td>4,56.10-02</td>
<td>1,46.10-03</td>
</tr>
<tr>
<td>Depletion potential of the stratospheric ozone layer (ODP)</td>
<td>kg CFC 11 eq.</td>
<td>1,43.10-04</td>
<td>2,76.10-04</td>
<td>4,19.10-04</td>
</tr>
<tr>
<td>Acidification potential (AP)</td>
<td>kg SO\textsubscript{2} eq.</td>
<td>2,44.10-00</td>
<td>1,12.10-00</td>
<td>3,56.10-00</td>
</tr>
<tr>
<td>Eutrophication potential (EP)</td>
<td>kg PO\textsubscript{4}3- eq.</td>
<td>5,27.10-01</td>
<td>1,96.10-01</td>
<td>7,23.10-01</td>
</tr>
<tr>
<td>Formation potential of tropospheric ozone (POCP)</td>
<td>kg C\textsubscript{2}H\textsubscript{4} eq.</td>
<td>2,79.10-01</td>
<td>1,15.10-01</td>
<td>3,94.10-01</td>
</tr>
<tr>
<td>Abiotic depletion potential – Elements</td>
<td>kg Sb eq.</td>
<td>2,86.10-03</td>
<td>9,81.10-05</td>
<td>2,96.10-03</td>
</tr>
<tr>
<td>Abiotic depletion potential – Fossil resources</td>
<td>MJ, net calorific value</td>
<td>1,27.10-04</td>
<td>5,93.10-03</td>
<td>1,86.10-04</td>
</tr>
<tr>
<td>Water scarcity potential</td>
<td>m3 eq.</td>
<td>1,97.10-05</td>
<td>1,56.10-06</td>
<td>1,74.10-06</td>
</tr>
</tbody>
</table>

*INA: Indicator Not Assessed

In the LCA study, the values of “global warming as land use and land transformation” are not assessed. However, the indicator Global warming land use and land transformation are less relevant for this kind of product (steel product). These indicators are of higher relevance for agriculture sector and agribusiness.

Use of resources

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT</th>
<th>Upstream</th>
<th>Core</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary energy resources – Renewable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use as energy carrier</td>
<td>MJ, net calorific value</td>
<td>6,37.10-02</td>
<td>1,27.10-03</td>
<td>1,90.10-03</td>
</tr>
<tr>
<td>Used as raw materials</td>
<td>MJ, net calorific value</td>
<td>0,00.10-00</td>
<td>0,00.10-00</td>
<td>0,00.10-00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>MJ, net calorific value</td>
<td>6,37.10-02</td>
<td>1,27.10-03</td>
<td>1,90.10-03</td>
</tr>
<tr>
<td>Primary energy resources –</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use as energy carrier</td>
<td>MJ, net calorific value</td>
<td>1,66.10-04</td>
<td>2,00.10-04</td>
<td>3,67.10-04</td>
</tr>
</tbody>
</table>
Non-renewableUsed as raw materials MJ, net calorific value 1.17.10^{03} 0.00.10^{00} 1.17.10^{03}

TOTAL MJ, net calorific value 1.78.10^{04} 2.00.10^{04} 3.78.10^{04}

Secondary material kg 0.00.10^{00} 0.00.10^{00} 1.40.10^{02}

Renewable secondary fuels MJ, net calorific value 0.00.10^{00} 0.00.10^{00} 0.00.10^{00}

Non-renewable secondary fuels MJ, net calorific value 0.00.10^{00} 0.00.10^{00} 0.00.10^{00}

Net use of fresh water m^3 6.08.10^{00} 4.54.10^{03} 4.54.10^{03}

Waste production and output flows

Waste production

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT</th>
<th>Upstream</th>
<th>Core</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous waste disposed</td>
<td>kg</td>
<td>4.72.10^{02}</td>
<td>3.10.10^{02}</td>
<td>7.82.10^{02}</td>
</tr>
<tr>
<td>Non-hazardous waste disposed</td>
<td>kg</td>
<td>7.39.10^{02}</td>
<td>4.34.10^{02}</td>
<td>1.17.10^{03}</td>
</tr>
<tr>
<td>Radioactive waste disposed</td>
<td>kg</td>
<td>3.49.10^{01}</td>
<td>5.79.10^{00}</td>
<td>6.14.10^{00}</td>
</tr>
</tbody>
</table>

Output flows

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>UNIT</th>
<th>Upstream</th>
<th>Core</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components for reuse</td>
<td>kg</td>
<td>0.00.10^{00}</td>
<td>1.46.10^{02}</td>
<td>1.46.10^{02}</td>
</tr>
<tr>
<td>Material for recycling</td>
<td>kg</td>
<td>0.00.10^{00}</td>
<td>4.85.10^{01}</td>
<td>4.85.10^{01}</td>
</tr>
<tr>
<td>Materials for energy recovery</td>
<td>kg</td>
<td>0.00.10^{00}</td>
<td>0.00.10^{00}</td>
<td>0.00.10^{00}</td>
</tr>
<tr>
<td>Exported energy, electricity</td>
<td>MJ</td>
<td>0.00.10^{00}</td>
<td>4.80.10^{00}</td>
<td>4.80.10^{00}</td>
</tr>
<tr>
<td>Exported energy, thermal</td>
<td>MJ</td>
<td>0.00.10^{00}</td>
<td>0.00.10^{00}</td>
<td>0.00.10^{00}</td>
</tr>
</tbody>
</table>
Additional information

OUTREAU TECHNOLGIES has an ISO9001 v2015 certified Quality Management System and an Environment Management System based on ISO 14001 to be achieved in a few years. Besides, our organization allow us to manage legal requirements of the French Administration.

More than 80% of the charge of the arc furnace is made of recycling metal (home scraps and circulating scraps). In addition, our product of cast manganese steel railway crossing, with a long cycle life (10 years on average), is fully recyclable into the process.

Since 2004, OUTREAU TECHNOLOGIES also has a used foundry sand thermal regeneration facility that recycles up to 85% of the sand. Additionally for many years, OUTREAU TECHNOLOGIES has implemented selective waste sorting.

Since 2016, OUTREAU TECHNOLOGIES has undertaken the reconstruction of production workshops: new buildings, process development…. This important project will significantly reduce the environmental impact of the site: reduction of covered areas, water withdrawals, risk of soil pollution….

References

Contact information

OUTREAU TECHNOLOGIES
Mr.Serge HERENG
43 rue Pierre Curie BP119
62230 Outreau
France
Office: +33 (0) 3 21 99 53 26
Cellular: +33 (0) 6 08 84 78 17
serge.hereng@vossloh.com or out.sales@vossloh.com

Author of the Life Cycle Assessment
LCI Bureau Veritas
33 Avenue du Général Leclerc
92260 Fontenay-aux-Roses
France
+33 (0)4 76 07 36 42
codde@fr.bureauveritas.com
www.codde.fr