System DFF 21
Highly elastic rail fastening for conventional rail and metro – the optimum single support point for slab track
Vossloh fastening systems
Based on our experience we are setting standards of the future.

Direct fastening on slab track
Slab track systems must meet special requirements to deflect forces generated by a rolling train into the ground in a smoothly and material-saving way: The highly elastic components of the rail fastening systems must replicate the original elasticity of the ballasted track. For system DFF 21, a highly elastic elastomer-rail pad made of cellentic is used in order to achieve that result. In case of single support points, the system’s base plate takes over the function of concrete sleepers and their shoulders: they keep the rail in the track and transfer dynamic forces in the substructure.

System DFF 21 – Flexible, resource-saving application in the slab track
The DFF 21 system, a single support point with screw-dowel combination for anchoring on slab tracks, is based on the approved tramway system W-Tram. Its reinforced base plate features a bigger surface for traffic load distribution: Since it withstands axle loads up to 26 t, it is suitable especially for metro and conventional rail projects. Application in covered track and switches is possible as well. Required material quantities are optimized due to the geometry of the plastic base plate: The high portion of long-lasting plastics ensures corrosion protection and electrical insulation. Compared to steel this light-weight material also provides logistic advantages and an easier handling during installation.

Conventional Rail – Safety on standard routes
Safety and comfort are decisive for rail traffic. Our tension clamps provide a stable fastening solution for types of track with a permissible axle load of up to 26 t. Components with high elasticity are able to balance the dynamic track forces out in an outstanding way.

Urban Transport – Always smooth with stop and go
Frequent starting and stoppings at many stops within the shortest time characterize urban transport. In this case, highly elastic components provide for comfortable travelling at high operating safety and reduced noise – at axle loads of up to 18 t (Metro) / 13 t (Tram).

Vossloh protect:
The new coating for tension clamps, sleeper screws and T-head bolts (incl. nuts ans wahsers) – for a consistent and high coating quality.

Advantages
• Conventional barrier protection plus cathodic corrosion protection, preventing the base material from corroding in the event of damages, e.g. caused by flying ballast.
• Withstands extreme conditions such as high temperature fluctuations, high humidity and industrial climate (acid rains).

cellentic is an elastomer made of EPDM that ensures high stability against many types of chemical attacks. The advantage: the material provides excellent resistance to temperature, aging, and weather conditions as well as it is very stable under permanent load. cellentic components optimize the elasticity for a reduction of vibrations and the protection of track.
System DFF 21

Angled guide plates keep the rail in the track
The angled guide plates lead the forces introduced into the rail by train in the base plate first and then into the concrete. In this way, the screw-dowel combinations are not loaded by shearing and bending forces. The design additionally supports the tilting protection. Different widths can adjust the gauge.

Adjustable height
Using height adjustment plates, the height of the system can be adjusted within 20 mm. With the optimized height adjustment plates NG the cellentic rail pad rests completely on the bearing face.

Securely clamped with the screw-dowel combination NG
The high-quality dowels made of hightech material are extremely strong and efficient: Lateral forces are reduced, this leads to a decrease in the load on the slab track.

Easy handling for installation and rail maintenance
- Flexibly applicable as single support point: no special shoulders (e.g. for concrete sleepers) required.
- Installation is possible both with bottom up (by bottom casting of base plate) and top-down method.
- For welding of the rail, no fastening elements have to be removed from the support point.
- All components can be replaced.

The W-shape of the Skl 21 provides safety
For meeting the required rail creep resistance two highly elastic, independently acting spring arms steadily hold the rail down; the middle bend acts as an additional tilting protection. With its high fatigue strength, it resists the dynamic vertical movements that are caused when the vehicle rolls over the rail. The system is maintenance-free: Due to the permanently acting tension, Skl and screw cannot loosen, the middle bend prevents the spring arms from plastic deformation.

Cellentic rail pad for high elasticity
The elasticity of the cellentic pad compensates the impacts of the vertical forces and with this, stable rail deflection; it also damps vibrations and minimizes the structure-borne noise.

Travel comfort through optimum rail deflection

The railway track must be elastic to compensate forces caused by running trains. Because ballast is not used for slab tracks, the highly elastic cellentic-components of the rail fastening system are designed to undertake this job. The DFF 21 system with cellentic rail pad allows rail deflection and can optimally distribute occurring vertical forces. The result: Protection of track. Its elasticity is adapted to the traffic load to achieve optimum rail deflection: load distribution is at the maximum without overloading the rail. Furthermore, the cellentic component damps the vibrations caused by the unevenness of track and wheels; structure-borne track vibration is minimized. The result: travel comfort, safety through smooth running, as well as increased lifetime of track components and vehicles.

Creep resistance and rail tilting protection

To allow optimum deflection for the rail, its fastening must respond in an elastic way. Therefore, the Skl 21 has a long spring deflection: When force is applied by a train, its spring arms remain in contact with the rail foot in each situation. For this purpose, the rail is continuously clamped in a force-fitted way by the two spring arms with a spring deflection of approx. 14.5 mm and a toe load of approx. 10 kN. With this, also a high creep resistance is achieved: When the trains accelerate / decelerate, the rails remain in position; dangerous fracture gaps due to broken rails are avoided. Simultaneously, a small gap between the middle bend and the rail foot of the rail has exactly the play required for operation. If the rail tilts excessively, e.g. in narrow curves, high forces are applied to the tension clamp. The Skl 21 is able to resist them: Rail movements are limited by the middle bend after the gap has been overcome, and the spring arms are not overstretched.

![Load-deflection-curve](image-url)

Zimmermann computation

Simplified demonstration: one axle of a two axle bogie

<table>
<thead>
<tr>
<th>Rail fastening system DFF 21 with tension clamp Skl 21</th>
<th>Conventional Rail / Urban transport / Transit; single support points on slab track</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical field of application</td>
<td></td>
</tr>
<tr>
<td>Axle load</td>
<td>≤ 26 t</td>
</tr>
<tr>
<td>Speed</td>
<td>≤ 250 km/h</td>
</tr>
<tr>
<td>Curve radius</td>
<td>≥ 150 m</td>
</tr>
<tr>
<td>Height adjustment</td>
<td>+ 20 mm</td>
</tr>
<tr>
<td>Gauge adjustment</td>
<td>± 10 mm</td>
</tr>
<tr>
<td>Vertical fatigue strength of Skl 21</td>
<td>2.5 mm</td>
</tr>
<tr>
<td>Static stiffness of cellentic rail pad</td>
<td>≥ 30 kN/mm</td>
</tr>
<tr>
<td>Relation of dyn./stat. stiffness of cellentic rail pad</td>
<td>1.1</td>
</tr>
<tr>
<td>Toe-load of Skl 21 (nominal)</td>
<td>10 kN</td>
</tr>
<tr>
<td>Electrical resistance</td>
<td>≥ 10 kΩ</td>
</tr>
<tr>
<td>Rail creep resistance</td>
<td>≥ 7 kN</td>
</tr>
<tr>
<td>Corrosion protection category (Skl,Ss)</td>
<td>CS-L (1440 h stainless)</td>
</tr>
<tr>
<td>System approval/homologation</td>
<td></td>
</tr>
</tbody>
</table>

Remark

Contents, figures and technical data in this brochure display the performance of the fastening system, however, they always depend on external conditions. Please contact us to enable us to develop a solution for you that will be customized to your requirements. The information presented corresponds to the technical state at the time of printing; in the meantime, continuous research and development programmes at Vossloh could have caused adaptations of the product.

www.vossloh.com

Vossloh Fastening Systems GmbH
Vosslohstraße 4
D-58791 Werdohl
Phone +49 (0) 23 92 52-0
Fax +49 (0) 23 92 52-448
E-Mail info.corecomponents@vossloh.com

The trademarks Vossloh, vossloh, cellentic and amalentic are registered trademarks, which are internationally protected in many countries. These trademarks may only be used with prior consent by Vossloh AG. This publication may also contain trademarks of third parties. The use of those trademarks is subject to the terms of use of the respective owner.